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Summary. A quantum mechanical calculation of  cross sections for the reaction 
F + H 2 ( v  = 0 , j  = 0 ) ~ F H ( v ~ ' ) + H  has been performed on the T5A semi- 
empirical potential surface using hyperspherical coordinates. State-to-state inte- 
gral and differential cross sections converge rapidly with the number of  compo- 
nents of the total angular momentum projection onto the axis of  least inertia. 
The v ' =  3 differential cross section has a forward peak whose magnitude 
increases with energy whereas the v' = 2 differential cross section has a backward 
maximum, in qualitative agreement with cross-beam experiments. The v' = 2 and 
v' = 3 rotational distributions are in rather good agreement with experiment, but 
not the vibrational branching ratios. 
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I. Introduction 

The recent availability of large memory vector computers has permitted the 
development of  new exact quantum mechanical methods for the determination of 
cross sections of reactive processes [ 1]. Much effort has been devoted in the past 
few years to the H + H2 ~ H2 + H [2-5] and D + H2 ~ DH + H reactions [6-7]. 
However, it is necessary to test the usefulness of  the new methods on less 
academic systems. 

The F + H2 ~ FH + H reaction, which is important in the design of  infrared 
chemical lasers, has been the subject of  very detailed studies by molecular beam 
techniques [8] and despite intense theoretical work, a quantitative description of  
all its aspects is not yet in hand [9]. Because this reaction is a highly exoergic 
one, many more quantum states are populated than in the above mentioned 
prototype reactions. It is thus a good candidate to test the ability of  new 
theoretical methods to produce converged state-to-state integral and differential 
reaction cross sections on more complex systems. In this study, we use the 
semiempirical T5A surface [10], which is currently believed to be the most 
realistic one for this system. 
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2. Theory 

The nuclear motions in the F H H  system can be described with mass-scaled 
Jacobi coordinates for a generic arrangement 2 (=c~, fl, 7), /~  (mass-scaled 
atom-diatom vector) and f~ (mass-scaled internuclear vector of  the diatom). 
Alternatively, we can use a set of hyperspherical coordinates [5, 11] closely 
related to the Smith-Whitten democratic coordinates [12]• They consist of three 
Euler angles (denoted collectively by ~r) which s p ~ e  orientation in space of  
the principal axis frame, the hyperradius 0 = x/R2 + r~ which parametrizes the 
size of the triatomic system, and two angles 0 and qSx which parametrize its 

• shape. The components o f / ~  and fx in the molecular plane Oxz are given by: 
Z~ = rl cos ~b~, Xx = - r2 sin ~b~, za = r 1 sin qS~, x~ = r2 cos ~b~ and the giration 
radii by rl = ~ cos(0/2), r2 = 0 sin(0/2). The angle 0 which measures the ratio of 
the two radii is allowed to vary between 0 and ~/2 and since rl >i r2, the 
body-frame axis z is the axis of least inertia. 0 = 0 corresponds to linear 
configurations and 0 =re/2 to symmetric top configurations• The range of 
variation of qS~ is [0, 2rc]. The coordinates associated to a different arrangement 
v are the same, except for the angle q5 which becomes q5 v = q~ - qS~ where q~v is 
the usual kinematic rotation angle. 

Following the diabatic-by-sector method [13], the range of variation of 0 is 
divided into sectors [0p-1/2, 0p+ 1/2] centered on 0p. Inside each sector, a partial 
wave of total angular momentum J, space-fixed component M, parity ei and 
permutation symmetry ee for the two hydrogen atoms, is expanded as: 

qJJ~s~P(Q0qS~) = o 5 ~  q~e(Qp,0q~)~r:~, t  ,,oj~,~j,~ . 

In this expression, N~ '~(~)  is a symmetric top function of definite parity ez 
and f2 is the absolute magnitude of the total angular momentum projection onto 
the axis of least inertia z. The two-dimensional surface states q)~/~"(0p; 0~b) which 
describe the internal 0, q~ motions in the p-th sector are the eigensolutions of a 
reference two-dimensional hamiltonian HO(~p): 

g°(op)q)~d~e(ep ; 04) = e N e ( Q p ) f p N e ( Q p  ; O~)) (2) 

where: 

1 / 4 t? t? 1 32 4f22 
Ha(OP) = 2~0~- ~ ~ sin 20 ~0 sin 20 ~ cos~ 0 ~?~b 2 + s i n ~ )  + V(0p; 0qS) (3) 

The fixed-0 and fixed-~2 two-dimensional eigenvalue Eq. (2) is solved by a 
variational expansion over a basis of symmetry-adapted two-dimensional har- 
monics which generalize the usual spherical harmonics. These harmonics are the 
solution of Eq. (2) with V = 0. For hyperradii 0 ~> 5a0, the surface states (p 
concentrate into the arrangement valleys, in a small-0 region of configuration 
space. A contracted basis of 0-localized functions is then built from the harmon- 
ics basis, yielding the same results with about 40% less functions at large 0. The 
size of the basis ranges from 400 to 1460 for the FH2 system, depending on ~ and 

values. 
The hyperradial functions f~a(0p; 0) are the solutions of a set of coupled 

second-order differential equations with couplings due to the difference between 
the exact hamiltonian and the reference hamiltonian Ha(~p). They arise firstly 
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from the variation of Ha(O) inside each sector and secondly from the operator: 
2 2 2 \ 1 {J~ -- J~z Jy 2i sin OJy 0 

c~(~) = 2 ~  \cos  2 0/2 q ) (4) cos 2 0 cos 2 0 ~-~b 

c6 is smooth and well behaved at linear (0 = 0) configurations but becomes 
infinite at symmetric top (0 = re/2) configurations which correspond to an 
isosceles H F H  with a bending angle equal to 87.1 °. Special care should be taken 
to handle this singularity when the wavefunction reaches symmetric top configu- 
rations [ 14] but for this system, this happens only for a kinetic energy larger than 
1.3 eV, well above the energy range of interest in the present study. 

The close coupling equations can be written: 

( 1 d2 ~ ~ k k ' \ O p , ~ : . . ' k ' O k ~ p , O )  2ydq2 + - E  f ~ e ( ~ , ;  Q) - [ - 2 H  O~lgP( " t ~ f J s l ~ P ( n  " 
~YQ l z 

+ Z c#8,~p : . mcJ~,~,:,, • (5) ~o.zo',ep, ~,, za' ,~p, e) = 0 
k 'a '  

and the coupling matrix elements are given by: 
81 gp • ~¢~.z~(. "e) = ( % ~  (ee, 04))]Ha(e)l~o;:~P(ep Oc~))oe (6a) • * k k '  " .~P ' 

~TJEI  gp : . • J M g  I e I ~p  . ka,~,a, tep, e) = ( q ) ~ ( e p ,  O0)Na (m)]cg(e)lq)za (ep, O(a)N~Y~(~V) )o~ (6b) 

Inside each sector, these equations are solved using the de Vogelaere [ 15] or 
logarithmic-derivative [16] methods. At the boundary between sectors, the 
functions ~tnd derivatives are transformed from one sector to the next. The sector 
width is an important parameter of the calculations. If  two small, the time 
needed to compute the surface states is too large. If  too large, the flexibility of 
the surface states basis is reduced and too many are needed to get convergence. 
In practice, we found that a uniform width of 0.2ao was adequate, in terms of 
accuracy and efficiency. 

The kinetic energy part of the hamiltonian Ha(0) has a separable form when 
expressed as a function of Fock internal coordinates co~ =tan-l(r~/R~) and 
qx = cos-~(Ra, P~) for any arrangement 2 [5]. At large e the surface states ,co 
concentrate into the arrangement valleys and the potential becomes independant 
of the bending angle t h. Thus, each surface state q~ converges to a separable state 
)6o:(e; ~o~)P}2(th) where P}~ is an associated Legendre function and Zx~j a vibra- 
tional function. We are then able to transform the wavefunction of Eq. (1) from 
the body-fixed hyperspherical representation to a space-fixed Arthurs-  
Dalgarno representation in Fock hyperspherical coordinates. This transforma- 
tion is performed in several steps: 

- -  Firstly, we determine for each surface state (p, the set of 2vj quantum numbers 
associated to its behavior at large e. 

- -  Secondly, we transform the wavefunction from the body-fixed principal axis 
representation to a body-fixed representation where the quantization axis is/~a, 
the atom-diatom Jacobi vector of arrangement 2. This transformation involves 
two-dimensional numerical quadratures. Because in each arrangement 2, the 
body-fixed axis z is close to Ra, it is almost unitary. 

- -Th i rd ly ,  a standard body-fixed to space-fixed transformation is performed 
using analytical methods. 

The wavefunction is then matched to asymptotic functions written with Jacobi 
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coordinates in the Arthurs-Dalgarno representation and the K, S, and T 
matrices are extracted to produce cross sections. Differential cross sections 
(DCS) have been computed in the helicity formalism [17]. 

Our computer code is divided into three stages. The first one concerns the 
calculation of the q~ basis and of the 0, ~b quadratures which are necessary to 
build the H a and cg couplings. It is independent of the total angular momentum 
J and of the energy E. The second stage concerns mainly the calculation of 
integrals over the external zv Euler angles present in the cg matrix elements, and 
of the body-fixed to space-fixed transformation. It depends on J but not on the 
total energy E and represents a small fraction of the total computer time. The 
third stage solves the close coupling equations for each J and E value and forms 
the bulk of the computational effort. It involves mainly matrix multiplications 
with the de Vogelaere option and matrix inversions with the logarithmic-deriva- 
tive option. Using highly optimized routines to perform these operation s (MINV 
and MXMA from the SCILIB on a CRAY-2), we found that the logarithmic- 
derivative method was faster by a factor ranging between 1.5 and 2, for the same 
accuracy. The convergence of the results can be studied by varying separately the 
number of k and O components in the wavefunction expansion of Eq. (1). 

3. Results 

State-to-state integral cross sections for the reaction F + H 2 ( v  = 0 , j = 0 )  
--*FH(vT') + H have already been computed for nine kinetic energies which 
range from threshold to 5.87 kcal/mol [18]. Partial waves with J ranging from 0 
to 31 were considered for each symmetric block ex = ( - 1) J, ee = + 1. We found 
that a basis of 150 surface states q) was adequate to converge J = 0 reaction 
probabilities. Among these states, 14 converge at large ~ to rovibrational states 
of the F + H 2  arrangement and 136 to rovibrational states of the F H + H  
arrangement, yielding two closed vibrational manifolds in each arrangement. The 
v ' =  2 and 3 reaction probabilities for J ~ 0 were converged with a maximum 
value f2,~ equal to 3. This permitted us to obtain state-to-state integral cross 
sections with only 552 channels whereas a basis with all O components involves 
1838 channels. This fast convergence property permits large savings because of 
the N 3 dependence of computer time with the number N of channels. The total 
integral reaction cross section obtained in this previous study [18] agrees very 
well with the value obtained in a recent time-dependent calculation [ 19]. 

Here, we are interested in state-to-state differential cross sections and it is 
not obvious that the same fast O-convergence holds for these very detailed 
quantities. Indeed, we found that Om= 3 is SUfficient to converge the v' = 3 DCS 
for all scattering angles 0 and the v' = 2 DCS for 0 > 45 °. Om = 10 is required to 
converge the v ' =  2 DCS in the forward direction. This is due to the fact that a 
truncated O basis implies the neglect of cg couplings between the higher O 
components. These couplings increase with total angular momentum J and are 
large for the high J partial waves which produce forward scattering. 

Figure 1 shows the rotationally summed DCS for Ekin = 2.74 kcal/mol. They 
vary smoothly with scattering angle whereas the individual DCS have large 
amplitude oscillations, mainly for O < 90 °. The v' = 3 DCS shows a strong and 
narrow forward peak whose half-width is 10 °. Its amplitude increases with 
increasing energy, whereas the v ' =  2 DCS has a backward maximum. These 
features are qualitatively consistent with the crossed-beam experiments [8]. 
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Indeed, the half-width of the experimental v '=  3 forward peak is 25 °, probably 
because of the finite angular resolution. The forward to backward DCS ratio for 
production of HF(v '=  3) is in semiquantitative agreement with experiment 
(Table 1). However, no forward v' = 2 is detected [8], whereas the present v' = 2 
forward DCS is small but non negligible. 

Figure 2 shows experimental and theoretical rotational distributions for 
production of FH(v '=  2, 3). The v '=  2 theoretical and experimental distribu- 
tions look very much the same, although their shape differ slightly. There is a 
tendency for the theoretical distribution at the highest energy to be too hot and 
too broad. The v' = 3 distributions at 0 = 100 ° are in quantitative agreement but 
not the distributions in the forward direction. 

Table 2 shows that there is a discrepancy in the magnitude of the R~ and R 3 

vibrational branching ratios. R 1 is smaller and R3 bigger than the corresponding 
experimental values. This discrepancy is present for all scattering angles (Fig. 1). 
A reason might be the contribution o f j  ¢ 0 initial H2 states which has not been 
considered in the present work and indeed, the R 3 theoretical branching ratio is 

Table 1. Theoretical and experimental [8] forward 
to backward differential cross section ratio for the 
production of  FH(v'  = 3) as a function of  the kinetic 
energy g k i  n in kcal/mol. The experimental results at 
1.84 kcal/mol have been obtained with para-Ha con- 
taining more than 80% H a in the j = 0 state and 
with normal  H 2 at the other energies 

~ i ,  present ReE[8]  

1.84 2.2 2.5 
2.74 5.0 3.7 
3.42 6,5 6.1 
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Table 2. Theoretical and experimental [8] vibrational branching ratios R,, = aoo~,  / 
aoo~2, where a is an integral cross section, for several kinetic energies Ekin (kcal/mol). 
The experimental conditions are as in Table 1 

Ekin R1 R 3 R~ xp R~ xp 

1,84 0.015 3.00 0.20 0.68 
2.74 0.021 2.84 0.23 0.53 
3.42 0.032 2.44 0.33 0.48 
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smaller with a j = 2 initial state for the J = 0 partial wave [20]. However, it 
remains larger than 1 and it is thus doubtful that this effect can reconcile the 
theoretical and experimental values. Moreover, the difference between the para- 
H2 and normal-H2 experimental branching ratios is small and the experimental 
data at 1.84 kcal/mol have been obtained with para-H2 containing more than 
800,/0 H 2 in j = 0. 

4. Conclusion 

We have computed cross sections for the F + H2 ~ F H  + H reaction using a 
principal axis hyperspherical coordinates formalism. An important aspect of  the 
present formalism is that we can truncate the basis with respect to the body- 
frame projection f2. Thus, one difficulty encountered in exact calculations of 
chemical reactions, namely the large number of magnetic sublevels associated 
with high j rotational states is in some way circumvented. 

As concerns the comparison with experiment, an intriguing aspect of  the 
present calculations is that vibrational branching ratios are not in agreement 
whereas rotational distributions agree much better. Of  course, a more precise 
comparison requires to include the contribution o f j  v a 0 initial H2 states and of  
the spin-orbit excited fluorine states, especially at the highest collision energy. 
However, the large discrepancy in vibrational branching ratios may be due to 
some error in the product region of the potential surface. 

The computing time of  the present method on this system is a few hours 
per energy, on a single processor of  a CRAY-2 and work on other chemical 
reactions is in progress. Since more than 95% of the computational effort lies in 
matrix inversions and multiplications, it may be adapted easily to concurrent 
supercomputers once efficient library routines are available to perform these 
operations. 
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